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Significance: In adult mammals, spontaneous repair of a cutaneous wound occurs slowly 

and leaves a scar with skin adnexa deficiencies. To accelerate cutaneous wound healing 

rates and avoid scar formation, current studies have focused on regenerative therapies. 

Recent Advances: Emerging therapeutics for regenerative wound healing often focus on 

the use of growth factors and stem cells. However, these therapeutic approaches have 

limited routine clinical use due to high costs and technical requirements. 

Critical issue: Understanding the molecular mechanisms involved in the signaling pathways 

for cutaneous wound healing and neogenic synthesis of the skin components is important 

for identification of novel targets for development of regenerative wound healing agents. 

Future Directions: The Wnt/β-catenin pathway is a well-known key player for 

enhancement of the overall healing process involving tissue regeneration via crosstalk with 

other signaling pathways. Strategies that activate the Wnt/β-catenin pathway via 

modulation of the pathway-controlling regulatory factors could provide effective 

therapeutic approaches for regenerative wound healing. 
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1.0 SCOPE AND SIGNIFICANCE3 

Our understanding of wound healing has increased over the past several decades along 

with advancements in the understanding of the molecular mechanisms involved in the 

process. In recent years, clinicians have been interested in the regenerative medications 

that increase the rates of wound healing, without scar formation. However, current 

therapeutic agents (e.g., growth factors) have limited use due to drawbacks such as poor 

efficacies, high costs, and low delivery rates. In this review, we describe distinctions 

between repair and regeneration in the wound healing process, then discuss current 

regenerative therapies and their limitations. Next, we discuss a future direction for the 

development of novel therapeutics that can induce regenerative wound healing by 

targeting Wnt/β-catenin pathway, a key signaling pathway involving skin regeneration. 

Finally, we suggest an approach targeting CXXC5, a negative feedback regulator of the 

Wnt/β-catenin pathway, as a safe and effective strategy for development of regenerative 

wound healing agents. 

2.0 TRANSLATIONAL RELEVANCE  

Instead of repair, which often results in scar formation, current therapeutic approaches for 

wound healing aim to stimulate a regenerative response that restores the wounded skin to 

the pre-injured state. Therefore, understanding the molecular mechanisms of the signaling 

pathways involving regenerative healing is important for the development of regenerative 

wound healing agents. The Wnt/β-catenin pathway plays important roles in multiple 

wound healing processes, including cell proliferation and tissue remodeling. It also 

participates in stem cell activation and growth factor expression. Therefore, targeting the 

Wnt/β-catenin pathway could be an ideal approach for regenerative wound healing. 

3.0 CLINICAL RELEVANCE  

New therapeutics have been developed subsequent to the biological and technical 

advances in the field of wound healing. However, current therapeutic agents are limited 

due to unsatisfactory efficacies, economic burdens, and adverse effects. The Wnt/β-

catenin signaling pathway is an attractive target for the treatment of many diseases 

related to tissue homeostasis, including wound healing. Approaches that search for Wnt/β-

catenin pathway activating compounds have been developed. A strategy that activates this 
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pathway via blockade of its negative feedback mechanism could be a potential approach 

for development of regenerative wound healing agents. 

4.0 BACKGROUND and OVERVIEW 

Wound healing is a complex process consisting of multiple phases (e.g., inflammation, 

proliferation, and remodeling) controlled by coordinated interactions among various cells, 

growth factors, cytokines, and chemokines.1,2 A failure during any of these phases results 

in abnormal scar or chronic wound formation. As the elderly population increases, the 

incidence of chronic and non-healing wounds is increasing, and the global wound care 

market is growing.3 Numerous wound care products and therapies have also been 

developed. 

Conventionally, a skin wound was managed using antibiotics and wound dressings 

that prevent infection and ensure sufficient tissue perfusion.4 However, these traditional 

therapies cause scar, which results in functional and cosmetic impairments including 

increased sensitivity to ultraviolet radiation and deficiencies in skin structures (e.g., sweat 

glands and hair follicles). With the growing interest in higher-quality wound healing, 

therapeutic approaches using growth factors and stem cells have been introduced as 

regenerative medicines for complete recovery of the damaged tissue without a remaining 

scar. 5-7 However, these approaches have limitations for routine clinical use due to 

drawbacks including high costs, technical difficulties, and delivery.8-10 Although a drug 

delivery system has been advanced, these issues remain to be resolved.11 

Over the past several decades, tremendous improvements have been made in 

understanding the relationships between signaling mechanisms and the wound healing 

process. The transforming growth factor beta (TGF-β) pathway, the Notch pathway, the 

Hedgehog pathway, and the Wnt/β-catenin pathway are signaling pathways important for 

skin regeneration. The absolute requirements for these pathways during skin development 

have been characterized through many mammalian studies.12 Therefore, these pathways 

have been suggested as targets for development of regenerative wound healing agents 

that contribute to the complete restoration of wounded skin. 

In this review, we suggest activation of Wnt/β-catenin pathway especially via 

release of the negative feedback regulation by CXXC5 as a potential therapy for acute 
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wound. Inhibition of CXXC5 function via blockade of its interaction with Dishevelled (DVL) 

enhances regenerative wound healing.13 This approach which activates the Wnt/-catenin 

pathway via blockade of the negative feedback mechanism is safe and results in minimal 

scar formation. 

5.0 DISCUSSION 

5.1 Repair and regeneration in wound healing 

The healing of wounded skin occurs by either simple repair or regeneration. Repair 

implies reestablishment of the structural continuity of injured or damaged tissue, and 

results in scar formation with tissue dysfunction. Regeneration, on the other hand, 

implies replacement of the injured tissue with newly generated tissue, resulting in full 

restoration of tissue morphology and functionality. 

Wound repair 

Wound healing is a dynamic process that restores the structural and functional 

characteristics of damaged tissues. It includes complex cellular and biochemical 

interactions involving multiple types of cells, extracellular matrix, growth factors, and 

cytokines.1,2 This interactive process consists of four phases: hemostasis, inflammatory, 

proliferative, and remodeling (Figure 1).14 In response to injury, the requirements of 

each phase coordinately function to achieve tissue repair. Often, however, the 

repaired skin is not identical to uninjured skin and induces formation of a non-

functioning mass of fibrotic tissue, or a scar.6 

Fibrosis 

Adult mammalian skin typically responds to injury by fibrotic repair. Fibrosis or scarring 

is attributed to deposition of excess amounts of extracellular matrix (ECM) 

components, such as collagen. The interposition of fibrotic tissue hinders skin adnexa 

formation and subsequent tissue regeneration.6 The inflammatory process could be 

involved in fibrotic healing.15 Although inflammation is crucial for protection of the 

body from infection by foreign organisms at the wound site, the deregulated pro-

inflammatory cytokines, including interleukin (IL)-1β and tumor necrosis factor (TNF)-α, 

contribute to the fibrotic process and can cause a chronic wound state or abnormal 

wound repair such as a hypertrophic scar and a keloid.16 
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Regenerative wound healing 

The regenerative healing of wound is characterized by complete restoration of tissue 

morphology and function (Figure 2). In contrast to adult mammalian tissue, injured 

embryonic tissue can be completely regenerated without scarring.17-19 

In order to determine the key factors mediating regenerative healing, it is 

important to understand the differences between embryonic and adult wound healing. 

In addition to the immature inflammatory responses mentioned above, embryonic 

tissue retains a relatively abundant stem cell population compared to adult tissue. 

Therefore, it is plausible that the restricted regenerative capacity of adult mammals is 

attributable to lowered population of stem cells or deficiency of proper environmental 

signals. Recent studies demonstrate that new tissue is generated by de-differentiation 

and transdifferentiation of adult cells at the edges of the wound.20,21 In addition, it was 

demonstrated that the epidermis of wounded adult mice regenerates skin adnexa, 

including hair and sweat glands, depending on characteristics such as wound size and 

status of specific signaling, e.g., the Wnt/β-catenin pathway.22 These observations 

indicate that there are factors leading to an embryonic skin-like environment in the 

wounded skin area during the healing process of adult mammals. This could occur by 

de-differentiation of adult cells to a stem cell-like state or recruitment of 

stem/progenitor cells into the wounded region. The Wnt/β-catenin pathway is closely 

related with these critical events involving activation of adult stem cells.23,24 Wnt/β-

catenin signaling plays important roles in determination of the fate and proliferation 

status of progenitor cells during embryonic development, as well as in maintenance of 

tissue homeostasis during the postnatal period.25,26 Therefore, it is worth considering 

the Wnt/β-catenin pathway as a target for development of regenerative wound 

healing agents. 

Before we discuss the role of the Wnt/β-catenin pathway in regenerative 

wound healing and its underlying mechanism in detail, we will briefly review current 

regenerative therapies and their limitation. 
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5.2 Current regenerative therapies and their limitation 

5.2.1 Growth factor-based therapies 

- PDGF: PDGF participates in cell growth and angiogenesis during the wound hea

ling process.27,28 PDGF comprises three isoforms: PDGF-AA, -BB, and -AB. Altho

ugh PDGF-BB is a growth factor firstly approved by the US Food and Drug Admi

nistration (FDA) for application to treat chronic wounds including diabetic foot 

ulcers29, controverting reports for its efficacy have been emerged.30,31 

- EGF: EGF induces re-epithelialization by promoting epithelial cell proliferation 

and migration.32,33 It also induces angiogenesis and tensile strength of new skin

. Clinical studies found that topical application of human recombinant EGF pro

motes epidermal regeneration of partial thickness wounds and second-degree 

burns.34-36 

- TGF-β: The main function of TGF-β is regulation of wound contraction and scar

ring.37,38 The TGF-β family comprises three functional isoforms: TGF-β1, TGF-β2

, and TGF-β3. While TGF-β1 and -β2 facilitate fibroblast-myofibroblast different

iation and ECM deposition, they often result in fibrosis and scar formation. TGF

-β3 promotes ECM reorganization and scar reduction. Administration of Avoter

min (human recombinant TGF-β3) showed significant improvement in preventi

on of scar formation, but it failed to meet its endpoints in phase III clinical trial

s.39,40 

- VEGF: VEGF induces initiation of angiogenesis by promoting endothelial cell pr

oliferation and migration. The VEGF family consists of VEGF-A (VEGF165), VEGF

-B, VEGF-D, VEGF-E, and placental growth factor. A clinical study found that VE

GF-A enhances vessel formation and improves re-epithelialization of diabetic f

oot wounds.41,42 A phase I clinical trial of the topical application of Telberim (re

combinant human VEGF) found that it accelerates ulcer healing in chronic diab

etic foot ulcer patients.43 

- FGF: FGF family, such as FGF-1, -2, -7, -10, and -22, have key roles during the w

ound healing process by promoting angiogenesis and encouraging connective t
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issue cell division.44,45 Especially, FGF-2 (i.e., bFGF) is able to regulate collagen 

distribution and reduce scar formation. Clinical trials of pressure ulcer and chro

nic burn wound treatments found that use of FGF-2 results in acceleration of h

ealing rates.46,47 

Limitations: A variety of growth factor-based therapies have been developed, but 

have had limited success. The development of recombinant growth factors is 

limited in their routine usage in clinic due to high cost and high risk. There are also 

many obstacles in the clinical applications because the growth factors have poor 

skin absorption rates and short half-lives due to their susceptibility to denaturation 

and proteolytic degradation.48 Thus, they are prone to be removed by exudation 

before reaching the wound. In order to achieve healing, repeated administration of 

high growth factor concentrations is needed but, the excess dose requirement 

could lead to local toxicity and adverse effects such as cancer development.49 

Furthermore, growth factors are required to interact with specific surface receptors 

of the target cells for exhibition of their biological activities. This ligand-receptor 

interaction activates a series of intracellular signaling cascades followed by an 

expression of target genes involved in the wound healing process. However, some 

cells within wounds lack growth factor stimuli due to defects in molecular 

components (e.g., down-regulation of receptor).8,50,51 

5.2.2 Stem cell-based therapies 

- Mesenchymal stem cells: Mesenchymal stem cells (MSCs) have self-renewal a

nd multipotent differentiation characteristics.52,53 They can release a variety of 

paracrine factors that enhance wound healing (e.g., PDGF-BB, VEGF, and bFGF) 

and subsequently promote angiogenesis.54,55 MSCs have anti-bacterial and anti

-inflammatory properties via the secretion of anti-microbial factors and anti-inf

lammatory cytokines, respectively.56 One clinical study found that chronic skin 

wound healing was improved by local application of bone marrow- and adipos

e-derived MSCs.57 

- Hematopoietic stem cells: Hematopoietic stem cells (HSCs) are self-renewing c

ells present in the bone marrow. When transplanted into mice, HSCs can differ
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entiate into follicular epithelial cells, sebaceous gland cells, and epidermal kera

tinocytes.58 They also promote angiogenesis. Topical application of HSCs led to 

improvement in wound closure rates of full-thickness excisional wounds in dia

betic mice.59 

- Epithelial stem cells: Epithelial stem cells (EpSCs) are quiescent cells, but they s

elf-renew and differentiate into at least one cell type. EpSCs have an important 

role in stratified epidermal regeneration.60 They also participate in hair follicle 

neogenesis in the wound dermis. Transplantation of a bioengineered dermis co

ntaining EpSCs into acute wounds induces skin reconstruction and hair formati

on in goats.61 Injection of EpSCs enhances vascularization, elastin content, and 

follicle-like structures when compared with the control group.62 

Limitations: Although stem cell therapy is a fast-growing field in regenerative 

medicine, many issues remain to be resolved (e.g., low safety, high cost, difficulty 

in administration and quality control) before the routine clinical usage. There is 

currently no FDA-approved stem cell therapy for wound treatment despite 

numerous attempts. The age of the transplanted cells and the local 

microenvironment of the injured skin also need to be considered for therapeutic 

application of stem cells.63 For example, MSCs derived from old mice rather 

inhibited wound healing in diabetic mice.64 A favorable environment, including a 

sufficient blood supply, receptor, and presence of biological molecules is 

necessary for effective use of stem cells as therapeutics for wound healing. These 

matters, together with the safety and quality control issues, make the clinical use 

of stem cell-based therapeutics challenging. 

5.3 Future direction for the development of regenerative therapeutics 

5.3.1 Signaling pathway and wound healing 

In order to overcome current limitations of regenerative therapeutics and to 

discover new therapies, it is necessary to understand pathways involved in wound 

healing. Growth factor therapies eventually exert their biological activities through 

the downstream signaling pathway after interaction with specific surface receptors. 



Page 10 of 48 
 
 
 

10 

A
d

va
n

ce
s 

in
 W

o
u

n
d

 C
ar

e 

A
p

p
ro

ac
h

es
 f

o
r 

re
ge

n
er

at
iv

e 
h

ea
lin

g 
o

f 
cu

ta
n

eo
u

s 
w

o
u

n
d

 w
it

h
 a

n
 e

m
p

h
as

is
 o

n
 s

tr
at

eg
ie

s 
ac

ti
va

ti
n

g 
th

e 
W

n
t/

β
-c

at
en

in
 p

at
h

w
ay

 (
D

O
I:

 1
0

.1
0

8
9

/w
o

u
n

d
.2

0
2

0
.1

2
8

4
) 

Th
is

 p
ap

er
 h

as
 b

ee
n

 p
ee

r-
re

vi
ew

ed
 a

n
d

 a
cc

ep
te

d
 f

o
r 

p
u

b
lic

at
io

n
, b

u
t 

h
as

 y
et

 t
o

 u
n

d
e

rg
o

 c
o

p
ye

d
it

in
g 

an
d

 p
ro

o
f 

co
rr

ec
ti

o
n

. T
h

e 
fi

n
al

 p
u

b
lis

h
ed

 v
er

si
o

n
 m

ay
 d

if
fe

r 
fr

o
m

 t
h

is
 p

ro
o

f.
 

The function of adult stem cells residing within tissues are modulated and 

reprogrammed by their microenvironment, especially molecular pathways.65,66 

Moreover, many mammalian studies have elucidated that flawless regeneration of 

embryonic skin wound absolutely depends on activity of signaling pathways which 

are important for complete restoration of adult wound skin.12 TGFβ, Notch, 

Hedgehog, and Wnt/β-catenin pathways are major players for regenerative wound 

healing. 

The TGF-β pathway is differentially involved in the regulation of healing rate 

depending on the isoforms.12 TGF-β1 functions as a fibrosis-stimulating factor but 

TGF-β3 regulates anti-scarring activity.67,68 Members of the TGF-β superfamily 

participate in the development of skin or its adnexa, such as hair follicles.69,70 The 

Notch pathway regulates epidermal cell differentiation during stages of adult and 

embryonic development.71 This pathway also has important roles in the 

maintenance of skin homeostasis and promotion of angiogenesis.72-74 The 

Hedgehog pathway is involved in skin morphogenesis and angiogenesis. The 

Hedgehog pathway modulates dermal repair and wound vascularization during the 

wound healing process.75,76 The Wnt/β-catenin pathway plays a role in adult tissue 

regeneration77-79, and participates in multiple steps of the wound healing process 

together with activation of stem cells residing within skin.24 Proper regulation of 

the Wnt/β-catenin pathway is crucial for flawless and complete regeneration of 

wounded skin. Therefore, we are going to focus on the Wnt/β-catenin pathway as a 

target for development of regenerative wound healing agents in the following 

sections of this review. Initially, small molecules or natural products which activate 

the Wnt/β-catenin signaling will be introduced because those are easier to 

manufacture than growth factors or stem cells. In the later part, we will focus on a 

new strategy for the regenerative wound healing targeting CXXC-type zinc finger 

protein 5 (CXXC5), a negative feedback regulator of the Wnt/-catenin pathway 

functioning via interaction with DVL.13,80 This approach blocking the CXXC5–DVL 

interaction for activation of the Wnt/-catenin signaling could be an effective and 

safe way for regenerative wound healing. 
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5.3.2 Regulation of the Wnt/β-catenin pathway 

The Wnt/β-catenin pathway has essential roles in numerous biological processes 

including cell proliferation, differentiation, and migration. It is well-known for its 

role in stem cell self-renewal and differentiation during normal tissue homeostasis 

and tissue regeneration after injury.78,79,81,82 The Wnt/β-catenin pathway has 

recently been characterized as a key modulator of cutaneous wound healing; 

Wnt/β-catenin signaling is up-regulated by wounding and is involved in the overall 

stages of the healing process.24 Therefore, activation of Wnt/β-catenin pathway is 

an attractive strategy for cutaneous wound healing. The rate of development of 

wound healing agents that activate the Wnt/β-catenin pathway has increased in 

recent years. 

Wnt/β-catenin signaling pathway 

The hallmark of Wnt/β-catenin signaling activation is stabilization and nuclear 

translocation of β-catenin. The stability of β-catenin is regulated by formation of a 

destruction complex consisting of Axin, adenomatous polyposis coli (APC), glycogen 

synthase kinase-3 (GSK-3), and casein kinase 1 (CK1) in the cytoplasm (Figure 3).83-

85 In the absence of Wnt stimuli, β-catenin is subjected to priming phosphorylation 

by CK1 and subsequent phosphorylation by GSK-3 in the destruction complex 

(Figure 3). The recruitment of β-TrCP, a E3 ubiquitin ligase, to the phosphorylated 

β-catenin results in proteasomal degradation via polyubiquitination. When 

extracellular Wnt ligands bind to the Frizzled receptor and LRP5/6 co-receptor 

complex, recruitment of the downstream signal mediators, such as Dishevelled 

(DVL) and Axin, is triggered and results in the dissociation of the destruction 

complex. Ultimately, the β-catenin is freed from the complex, accumulates in the 

cytoplasm, and is then translocated into the nucleus. In the nucleus, β-catenin 

binds with the T-cell factors/lymphoid enhancing factors (TCFs/LEFs) for target 

gene expression. More than 100 Wnt/β-catenin target genes have been 

identified.79 Many of these genes (e.g., Axin2, Collagen I, Collagen III, EGFR, 

Endothelin-1, Fibronectin, Keratin-14, Lgr5, VEGF, and WISP1) have roles in 

cutaneous wound healing (Figure 4 and Table 1). 
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The roles of Wnt/β-catenin signaling in the wound healing process 

Many target genes that are transcriptionally induced by activation of the Wnt/β-

catenin pathway mediate various functions during the wound repair process (e.g., 

inducing structural construction of the dermis and epidermis and promoting 

angiogenesis) (Table 2). Moreover, the Wnt/β-catenin pathway plays key roles in 

regenerative wound healing (e.g., inducing formation of skin adnexa, such as hair) 

by promoting the activation of the stem cells.24 

- The profile of Wnt/β-catenin signaling activity during the wound healing proc

ess 

The Wnt/β-catenin signaling pathway is activated in the dermis of the wound 

bed soon after a skin injury. This activation is quick and spatially restricted 

within the wound site. A study displayed that the change of oxygen tension 

occurring within minutes of skin damage can trigger activation of the Wnt/β-

catenin pathway through hypoxia-inducible factor (HIF)-1α.86 During the 

proliferative phase of wound healing, Wnt/β-catenin signaling activity is highly 

increased in mesenchymal cells. For example, murine dermal fibroblast 

cultures exhibit increment in β-catenin protein levels and TCF/LEF-mediated 

transcriptional activity during proliferation.87 In human wound samples, the 

levels of β-catenin and the expression of its target genes (e.g., fibronectin and 

MMP7) are increased during the dermal proliferative phase.88 

- The roles of Wnt/β-catenin pathway in wound repair 

Up-regulation of Wnt/β-catenin signaling promotes proliferation and migration 

of dermal fibroblasts, making them differentiate into myofibroblasts. This 

process helps to reduce the surface area of the developing scar.87,89 The 

activated Wnt/β-catenin signaling not only facilitates migration and 

differentiation of keratinocytes in the epidermis, but it also promotes 

angiogenesis, follicle regeneration, and epithelial remodeling, which directly 

enhances cutaneous wound healing.24,90 
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- The roles of Wnt/β-catenin pathway in stem cell activation  

Typically, stem cells are harbored in most adult tissues. However, they easily 

lose their self-renewal capability in response to stress or aging. The Wnt/β-

catenin pathway plays roles in tissue-residing, stem cell activation, and 

migration to the wound bed in the basal epidermis for regeneration of 

damaged tissue.91 In response to the Wnt/β-catenin signaling, TCF/LCF 

complex modulates the fates of lineages of multipotent stem cells in the skin.92 

For example, Wnt/β-catenin is involved in activation of epidermal stem cells 

(ESCs), the major source for replenishment of lost cells in the process of 

wound healing.93 The elevated Wnt/-catenin signaling activity not only 

enhances proliferation of quiescent ESCs, but it also promotes differentiation 

of ESCs into keratinocytes.94 Furthermore, elevation of β-catenin activity 

significantly promotes neogenesis of hair follicles, representing a fully 

functional inter-follicular epidermis in adult mice.22,95,96 By contrast, inhibition 

of Wnt/β-catenin signaling during skin wounding hinders formation of 

epithelial adnexa, including hair and sweat glands, resulting in scarring. These 

findings indicate that the Wnt/β-catenin pathway can trigger regeneration of 

wounded skin by serving as a niche signal for activation of skin stem cells.97 

The Wnt/-catenin signaling target gene product, Axin2 and Lgr5, are well-

known markers for the self-renewing stem cells in tissues including the skin 

and the hair follicle.77,98 

- The roles of Wnt/β-catenin pathway in hyaluronic acid synthesis 

In wound healing, the main difference between repair and regeneration comes 

from ECM content. During the healing process, granulation tissue, which is 

formed at the wound site, is characterized by the proliferation of fibroblast 

that produce ECM components including fibronectin, collagen-III, elastin, and 

hyaluronic acid (HA).99 In the final stage of wound repair, the granulation 

tissue is converted to fibrotic scar tissue as collagen-III is replaced by collagen-I 

forming collagen fibers. The alignment of excessive collagen fibers in the 

dermis results in an inelastic collagen scar. In the process of regenerative 
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healing, on the other hand, much higher amount of HA is present in ECM 

compared with the repair process, and thus it reduces collagen deposition and 

subsequent fibrotic scar formation.100 Wnt3a treatment up-regulates genes 

involved in HA synthesis in fibroblasts.101 Furthermore, HA interacts with CD44, 

a well-known Wnt/-catenin signaling-target, in order to exert its function in 

wound healing process including enhancement of cell migration toward wound 

sites and promotion of angiogenesis as well as direct enhancement of tissue 

regeneration.102-104 Therefore, Wnt/β-catenin pathway not only induce HA 

synthesis, but also regulate biological function of HA for regenerative wound 

healing. 

- Crosstalk of Wnt/β-catenin pathway with other signaling pathways  

The Wnt/β-catenin pathway cooperates with other signaling pathways during 

the wound healing process. It interacts with the TGF-β/Smad pathway, which is 

a major signaling pathway involved in cutaneous wound healing and dermal 

fibrosis. TGF-β signaling is transiently activated after a skin injury; β-catenin 

level is then increased via the inhibition of GSK-3β activity or DKK-1 

expression.105-107 The proliferation of fibroblast and its differentiation into 

myofibroblasts via activation of TGF-β signaling occurs in a β-catenin-

dependent manner. These results indicate that the Wnt/β-catenin pathway is a 

mediator of TGF-β/Smad signaling-induced wound healing. Synergistic 

activation through mutual interaction of the Wnt/β-catenin and Notch 

pathways improves wound healing and inhibits scar formation by promoting 

embryonic stem cell proliferation, keratinocyte differentiation and migration, 

and follicle regeneration.94 To reconstitute skin adnexa and obtain complete 

healing, Wnt/β-catenin signaling also facilitates hair follicle regeneration in 

wounded skin through formation of a positive feedback loop with FGF-9 

signaling.108 
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Therapeutic potential of Wnt activators for regenerative wound healing 

Considering the roles of the Wnt/β-catenin pathway during wound healing, it has 

recently been used as a target for the development of wound healing agents. 

Studies have examined on small molecules and natural products that activate the 

Wnt/β-catenin pathway as potential therapeutics for diverse diseases.109,110 Some 

of these are under development for the treatment of skin wounds (Figure 5 and 

Table 3). 

- Lithium chloride: Lithium chloride (LiCl) is well-known GSK3 inhibitor and has a 

capability for activation of Wnt/β-catenin pathway.111 Topical application of LiC

l to the wounded skin of rats induced enhancement of the wound closure rate 

with elevated β-catenin level.94 Moreover, thickness of the neoformative epide

rmis layer and formation of hair follicle structures and sebaceous gland were in

creased in skin tissues of rats by topically applied LiCl. 

- Valproic acid: The small-molecule valproic acid (VPA) is known to activate the 

Wnt/β-catenin pathway by inhibiting GSK-3β.112 Furthermore, VPA enhances w

ound healing through promotion of neo-epidermis formation, fibroblast-myofi

broblast transition, and cellular proliferation. One study found that when mice 

were treated with VPA, full-thickness wound sizes were markedly reduced, and 

healing rates increased. VPA also induces the expression of stem cell markers (

e.g., CD34) involved in neo-vascularization. 

- Lucidone: Lucidone, a naturally occurring cyclopentenedione isolated from the 

dried fruits of Lindera erythroccarpa, was reported to increase β-catenin level t

hrough GSK3β-dependent pathway and enhance wound healing both in vitro a

nd in vivo models.113 Lucidone not only promoted proliferation and migration i

n both keratinocyte and fibroblast cells, but also triggered expression of angiog

enesis markers in endothelial cells. The healing rate of punched wounds on mic

e was accelerated by the topical application of lucidone. 

- Polygonum aviculare L.: Polygonum aviculare L. extract was screened out as a 

natural product that activates the Wnt/β-catenin pathway.114 At the cell level, 

P. aviculare L extract promoted migration of both keratinocytes and fibroblasts
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.115 Treatment with P. aviculare L. extract accelerated the healing rates of full-t

hickness dorsal wounds in mice, compared with a control group. Active ingredi

ents of P. aviculare L. extract (e.g., quercitrin hydrate, caffeic acid, and rutin) h

ave been characterized as components that activate the Wnt/β-catenin pathw

ay and enhance keratinocyte migration. 

5.3.3 CXXC5, a negative feedback regulator of the Wnt/β-catenin pathway, suppresses 

the wound healing process 

Activation of the Wnt/β-catenin pathway is an ideal strategy for regenerative 

wound healing. However, development of therapeutics that activate this pathway 

is limited due to the presence of its own negative regulation systems. Inhibitory 

factors of the Wnt/β-catenin pathway disrupt skin wound healing. For example, 

Dickkopf-1 (DKK-1), a secreted Wnt antagonist functioning via interaction with 

LRP5/6 receptor, hinders proliferation of dermal fibroblasts as revealed by both in 

vitro and in vivo system.116     Consistent with these results, intradermal injection of 

small interfering RNA (siRNA) for DKK-1 enhances dermal fibroblast functions. 

Another secreted Wnt antagonist, Frizzled-related protein-1 (sFRP-1), suppresses 

cell proliferation and ECM production in keloid fibroblasts by inhibiting Wnt/β-

catenin signaling through interacting with either Wnt or Frizzled.117 A mouse model 

revealed that injection of a neutralizing antibody against sFRP-1 into the palatal 

wound edge promotes the healing of wounded skin.118 

The function of a negative feedback regulator of the Wnt/β-catenin 

pathway, CXXC5, is determined by its subcellular location that depends on the 

tissue type and the cell’s physiological status. Cytosolic CXXC5 plays a role as a 

Wnt/β-catenin signaling inhibitor, whereas nuclear CXXC5 functions as a 

transcription factor.119-123  

By binding DVL, cytosolic CXXC5 has a variety of pathophysiological roles by 

inhibiting the Wnt/β-catenin signaling pathway (Figure 6).13,80,124,125 CXXC5 can be 

transcriptionally induced by the Wnt/β-catenin signaling itself or under a variety of 

pathophysiological status (e.g., alopecia, osteoporosis, wound formation, and 
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termination of height growth at puberty), and these pathological aberrancies can 

be restored in CXXC5 knock out mice of the disease model systems.13,80,124,125 

Taken together, these findings indicate that CXXC5 can be a therapeutic 

target for diseases caused by suppression of Wnt/β-catenin signaling. The 

importance of targeting cytosolic CXXC5 function in wound healing was supported 

by enhanced cutaneous wound healing in mice treated with the protein 

transduction domain-fused DVL-binding motif (PTD-DBM) peptide, which blocks 

CXXC5–DVL protein-protein interactions (PPI). 13 

A role of CXXC5 during wound healing 

In melanoma patients, β-catenin level was gradually increased, especially during 

the late inflammatory and early proliferative stages, and then decreased during the 

remodeling stage (Figure 7).13 In contrast, CXXC5 level was declined during the 

early proliferative stage after surgery but then rose again, which shows the 

opposite patterns of those of β-catenin in the same wounded area. The inhibitory 

role of CXXC5 in wound healing was revealed by the increment of the wound 

closure rate in Cxxc5-/- mice.13 Myofibroblast differentiation and collagen 

production is inhibited by CXXC5 overexpression in human dermal fibroblasts.  Both 

in vitro and in vivo studies found that the inhibitory roles of CXXC5 during the 

wound healing process are exerted by suppression of Wnt/β-catenin signaling via 

its interaction with DVL in the cytosol.13 Taken together, these findings indicate 

that the inhibition of CXXC5 function, especially its cytosolic role related to Wnt/β-

catenin signaling inhibition, may be a new strategy for development of wound 

healing agents. 

Effects of PTD-DBM, an interfering peptide against CXXC5–DVL interaction, on 

wound healing 

A PTD-DBM peptide, that contains the sequence of CXXC5 binding to DVL and 

activates Wnt/β-catenin signaling via interference of the CXXC5–DVL interaction, 

was developed for practical application (Figure 8A).80 The PTD-DBM peptide 

effectively promotes cell migration in vitro via activation of Wnt/β-catenin 

signaling.13 Topical application of the PTD-DBM peptide significantly accelerates the 

wound closure rate. Increment in wound healing-related markers and critical 
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deposition of collagen occur during the healing of full-thickness wounds on the 

backs of mice (Figure 8B). In addition to enhancement of wound healing, induction 

of alkaline phosphatase (ALP) in PTD-DBM peptide-treated mouse wounds indicate 

that PTD-DBM peptide promotes formation of neogenic hair follicles (Figure 8B), 

proved by the presence of white hair in the healed tissues.124 Recent clinical studies 

by the Clinical Peptide Society found that PTD-DBM peptide enhances human hair 

growth. These observations indicate that activation of the Wnt/-catenin signaling 

by the blockade of the CXXC5–DVL interaction with PTD-DBM peptide could be a 

therapeutic strategy for regenerative wound healing. 

Perspectives 

The Wnt/β-catenin pathway is an attractive target for regenerative wound healing. 

Although agents activating Wnt/β-catenin signaling stimulate the wound healing 

process, an appropriate dosing and treatment duration is important because 

aberrant activation of the Wnt/β-catenin pathway causes fibrotic diseases including 

hypertrophic scarring, keloid formation, and skin cancer. However, activating 

Wnt/β-catenin signaling via releasing the CXXC5-mediated negative feedback loop 

instead of via direct activation enhances wound healing without leading to 

unwanted outcomes such as melanoma. The safety of this therapeutic approach 

was confirmed by the absence of any pathological skin phenotypes, including 

melanoma-accompanying transformations, in 1-year-old Cxxc5-/- mice or in mice 

that received topical application of PTD-DBM peptide for more than 6 months. 

Furthermore, PTD-DBM peptide treatment does not induce transcription of cyclin 

D1 and c-Myc, which are the Wnt/β-catenin signaling target genes frequently 

overexpressed during cancer development, but does induce transcription of 

endothelin-1, which contributes to enhanced wound healing.13 Finally, the specific 

blockade of the cytosolic function suppressing Wnt/β-catenin signaling, not the 

nuclear function acting as a transcription factor,119,120 further provides conceptual 

safety of an approach interfering the CXXC5–DVL interaction for target specificity. 

Therefore, the CXXC5–DVL interaction is potentially a safe target for regenerative 

wound healing. A strategy to discover small molecules mimicking the PTD-DBM 



Page 19 of 48 
 
 
 

19 

A
d

va
n

ce
s 

in
 W

o
u

n
d

 C
ar

e 

A
p

p
ro

ac
h

es
 f

o
r 

re
ge

n
er

at
iv

e 
h

ea
lin

g 
o

f 
cu

ta
n

eo
u

s 
w

o
u

n
d

 w
it

h
 a

n
 e

m
p

h
as

is
 o

n
 s

tr
at

eg
ie

s 
ac

ti
va

ti
n

g 
th

e 
W

n
t/

β
-c

at
en

in
 p

at
h

w
ay

 (
D

O
I:

 1
0

.1
0

8
9

/w
o

u
n

d
.2

0
2

0
.1

2
8

4
) 

Th
is

 p
ap

er
 h

as
 b

ee
n

 p
ee

r-
re

vi
ew

ed
 a

n
d

 a
cc

ep
te

d
 f

o
r 

p
u

b
lic

at
io

n
, b

u
t 

h
as

 y
et

 t
o

 u
n

d
e

rg
o

 c
o

p
ye

d
it

in
g 

an
d

 p
ro

o
f 

co
rr

ec
ti

o
n

. T
h

e 
fi

n
al

 p
u

b
lis

h
ed

 v
er

si
o

n
 m

ay
 d

if
fe

r 
fr

o
m

 t
h

is
 p

ro
o

f.
 

peptide could be a valuable approach for development of a first-in-class wound 

healing agents that would be cost-effective and suitable for routine use. 

6.0 SUMMARY 

An acute skin wound is spontaneously repaired within 1–2 weeks. However, due to scar 

formation, the repaired skin is not identical to intact uninjured skin. As the elderly 

population with delayed wound healing increases, the need for effective wound healing 

agents based on regenerative healing also increases. Current wound care research has 

focused on regenerative therapies to diminish scar formation, improve the quality of 

restored skin, and accelerate healing rates. 

The Wnt/β-catenin pathway could be as a major target for development of drugs in 

the field of regenerative wound healing because it can promote the overall wound healing 

process by activation of stem cells through interaction with other signaling pathways 

including the TGFβ/Smad pathway. 

Activators of Wnt/β-catenin signaling, such as small molecules (e.g. LiCl and VPA) 

and natural products (e.g. lucidone and Polygonum aviculare L. extract), have been 

characterized as agents enhancing wound healing. However, their effectiveness during the 

healing process could be restricted due to induction of CXXC5, a negative feedback 

regulator of the Wnt/-catenin pathway, during the early stages of wound healing. 

Therefore, inhibition of CXXC5 function, especially the cytosolic form that suppresses 

Wnt/β-catenin signaling via interaction with DVL (CXXC5–DVL interaction, PPI), is a target 

for the development of novel regenerative wound healing agents. Topically applied PTD-

DBM peptide, which interferes with the CXXC5–DVL interaction, effectively enhances the 

wound healing process and has potential as a therapeutic agent. The maximal effects of 

PTD-DBM peptide occur in combination with direct Wnt/-catenin signaling activators, 

such as VPA. This combination treatment promotes regenerative wound healing via strong 

activation of the Wnt/β-catenin pathway; initial activation occurs through VPA-induced 

GSK-3β inactivation. Subsequent further activation is enhanced via blockade of the CXXC5–

DVL interaction by the PTD-DBM peptide. This approach for wound healing activating the 

Wnt/-catenin signaling could minimize undesirable side effects (e.g., skin cancer) that can 

be induced via aberrant activation of the Wnt/β-catenin pathway. 
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TAKE-HOME MESSAGES 

• Use of regenerative therapies including stem cells and growth factors is a current appr

oach for complete healing of skin wounds. 

• Multiple signaling pathways are involved in the skin wound healing, and the Wnt/-cat

enin pathway is a key player in the wound healing process.  

• The Wnt/-catenin pathway participates in the activation of skin stem cells as well as t

he overall process of wound healing to enhance regenerative wound healing. 

• CXXC5, a negative feedback regulator of the Wnt/-catenin pathway, suppresses woun

d healing by exerting its function via suppression of this pathway. 

• Inhibition of CXXC5 function via its binding to DVL enhances the speed and quality of h

ealing in mouse skin wounds, without any adverse effects. 

• Restoration of the Wnt/-catenin signaling via blockade of the CXXC5-mediated negati

ve feedback mechanism, not by direct activation, is a potential future strategy for rege

nerative wound healing. 
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ABBREVIATIONS AND ACRONYMS 

ALP = alkaline phosphatase 

APC = adenomatous polyposis coli 

CK1 = casein kinase 1 

CXXC5 = CXXC-type zinc finger protein 5 

DBM = dishevelled binding motif 

DVL =dishevelled 

ECM = extracellular matrix 

EGF = epidermal growth factor 

ESC = epidermal stem cell 

EpSC = epithelial stem cell 

FDA = Food and Drug Administration 

FGF = fibroblast growth factor 

GSK-3 = glycogen synthase kinase-3 

HA = hyaluronic acid 

HSC= hematopoietic stem cell 

IL = interleukin 

iPSC = induced pluripotent stem cell 

LGR5 = leucine rich repeat containing G protein-coupled receptor 5 

LiCl = lithium chloride 

MMP = metalloproteinases 

MSC = mesenchymal stem cell 

PDGF = platelet-derived growth factor 
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PPI = protein–protein interaction 

PTD =protein transduction domain 

TGF-β = transforming growth factor beta 

TNF = tumor necrosis factor 

VEGF = vascular endothelial growth factor 

VPA = valproic acid 

WISP1 = Wnt1-inducible signaling pathway protein 1 
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FIGURE LEGENDS 

 

Figure 1. Wound repair phases 

The four different stages of the wound repair process. 1) The hemostasis phase (begins 

immediately after wounding), the coagulation process blocks the current leakage of blood 

and fluids via fibrin network formation and platelet deposition. This initial phase also has a 

role as a barricade against microorganism entry into the lesion. 2) The inflammatory phase 

(begins within 24 hours after wound formation and lasts for several days), neutrophils and 

macrophages remove bacteria and cell debris. They also promote the production of 

cytokines and assist other inflammatory cells recruited to the wound region. 3) The 

proliferative phase (begins 4–5 days after wound formation and lasts for several weeks), 

re-epithelialization, angiogenesis, and extracellular matrix (ECM) and granulation tissue 

formation occur via the activation of, and crosstalk between, multiple signaling cascades. 

4) The final remodeling phase (begins at approximately 3 weeks after wound formation 

and lasts for as long as 1–2 years), the tissue tensile strength is generated by ECM 

reorganization. Multiple cells undergo apoptosis to finish tissue remodeling. 
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Figure 2. Comparison between repair and regeneration in skin wound healing 

Left, Repaired skin. Healing by the repair process fails to restore skin to uninjured status 

and remains scar due to the alignment of excessive collagen fibers in the dermis. Right, 

Regenerated skin. The regenerative healing induces de novo synthesis of hyaluronic acid, 

and results in complete restoration of skin tissue with the formation of adnexa including 

hair. 
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Figure 3. Wnt/β-catenin pathway and its target genes 

In absence of the Wnt ligand, the destruction complex composed of Axin, APC 

(adenomatous polyposis coli), GSK-3 (glycogen synthase kinase-3), and CK1 (casein kinase 

1) is formed in the cytoplasm. By forming this complex, β-catenin is phosphorylated 

initially by CK1 and subsequently by GSK-3. The -TrCP E3 linker is recruited to the 

phosphorylated -catenin and -catenin is then degraded by ubiquitin-mediated 

proteasomal degradation machinery. In the presence of Wnt ligand, it binds to the 

Frizzled/LRP5/6 receptor complex, leading to the dissociation of the destruction complex. 

Free -catenin proteins accumulate in the cytosol and are then translocated into the 

nucleus for activation of TCFs/LEFs (T-cell factors/lymphoid enhancing factors). The 

activation of TCFs/LEFs transcription factors induces a variety of Wnt/-catenin signaling 

target genes, including those involved in skin wound healing (e.g., Axin2, Collagen I, 

Collagen III, EGFR, Endothelin-1, Fibronectin, Keratin-14, Lgr5, VEGF, WISP-1). 
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Figure 4. The effects of Wnt/β-catenin pathway target genes on cutaneous wound repair 

Various Wnt/β-catenin signaling target genes contribute to the multiple events that occur 

during wound healing. For example, Collagen-I has a role in ECM formation, WISP1 

activates fibroblast proliferation and migration, fibronectin controls re-epithelialization 

and ECM formation, Keratin-14 promotes re-epithelialization, EGFR regulates keratinocyte 

proliferation and migration, VEGF enhances angiogenesis, and Lgr5 and Axin2 promotes 

hair formation via activation of hair follicle stem cells. 
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Figure 5. Effects of Wnt activators on healing of wounded skin 

The agents that activate the Wnt/β-catenin pathway include small molecules, such as LiCl 

and VPA (valproic acid), and natural products, such as lucidone and P. aviculare 

(Polygonum aviculare L.) extract.112,115 Up-regulation of the Wnt/β-catenin pathway via 

topical application of these agents promotes wound healing with increased expression of 

stem cell markers such as nestin and CD34. Reproduced with permission from Lee et al. 

and Seo et al.112,115 
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Figure 6. CXXC5 is a negative feedback regulator of the Wnt/-catenin pathway and 

suppresses expression of target genes involved in wound healing. 

CXXC5 transcription is induced by strong activation of the Wnt/-catenin during the wound 

healing process. CXXC5 binds to DVL in the cytosol and subsequently suppresses Wnt/-

catenin signaling by blocking the dissociation of the destruction complex by DVL. Inhibition 

of Wnt/β-catenin signaling in the skin results in repression of wound healing-related genes 

following inhibition of the wound healing process. 
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Figure 7. Kinetics of the expression levels of β-catenin and CXXC5 during the wound 

healing process 

Profiles for CXXC5 and β-catenin expression during the wound healing process, adapted 

from a previous study.13 The tissue samples were from patients with melanoma who 

underwent surgery. The immunohistochemical images represent expression levels of 

CXXC5 and β-catenin in wounded skin at 0, 7, 28, and 84 days after surgery. Day 0, intact 

skin. White dashed lines, the epidermal-dermal junction. F, fibroblasts; K, keratinocytes. 

Scale bars, 100 μm. Reproduced with permission from Lee et al.13 
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Figure 8. PTD-DBM, a peptide that interferes with the CXXC5-DVL interaction, and its 

effectiveness on regenerative wound healing  

(A) The PTD-DBM peptide consists of a protein transduction domain (PTD), linker, DVL-

binding motif (DBM), and FITC (left).80 The function of the PTD-DBM peptide is exerted by 

interfering with the CXXC5–DVL interaction via competitive DVL binding with CXXC5, 

followed by activation of the Wnt/-catenin signaling (right). (B) The effects of PTD-DBM 

on wound healing in mice. The immunohistochemical images are adapted from a previous 

study.13,124 100 µΜ of PTD-DBM was applied daily into the wounded skin of 7-week-old 

male C3H mice for 11 days after wound formation (diameter = 1.5 cm). Analysis of the 

healing rate is shown, macroscopic image and H&E staining results. Confocal microscopic 

examination was used to detect the expression of β-catenin, keratin-14, and collagen-I 

markers. Collagen synthesis was measured using Masson’s trichrome, picrosirius red, and 

van Gieson staining. For analysis of skin adnexa, 2 mM of PTD-DBM was applied daily into 

the wounded skin of 3-week-old male C3H mice for 14 days after wounding (diameter = 1 

cm). The formation of neogenic hair follicles was detected using H&E and alkaline 

phosphatase (ALP) staining (dark blue). White dashed lines, the epidermal-dermal 

junction. Black arrow, ALP expression. F, fibroblasts; K, keratinocytes; e, epidermis; d, 

dermis. Scale bars, 100 μm. Reproduced by permission from Lee et al.13,124 
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Table 1. List of target genes involved in the Wnt/β-catenin pathway that are related to 

wound healing 

Wnt 

target genes 
Role in wound healing Reference 

Axin2 Hair formation via activation of hair follicle stem cells 77,126,127 

Collagen I Key protein of ECM synthesized during proliferative phase 6,104,128 

Collagen III Key protein of ECM synthesized during early proliferative 

phase 

104,129,130 

EGFR Regulation of keratinocyte migration to wound bed 131 

Endothelin-1 Regulation of fibrosis and calcification 132 

Fibronectin ECM formation and re-epithelialization 133,134 

Keratin-14 Re-epithelialization 135 

Lgr5 Hair formation via activation of hair follicle stem cells 77,98 

VEGF Stimulation of angiogenesis 136,137 

WISP1 Promotion of dermal fibroblast proliferation and migration 138,139 
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Table 2. The effects of Wnt/β-catenin pathway activation on wound repair and 

regeneration 

 
The effects by activation of Wnt/β-catenin pathway  Reference 

Repair • Promotion of angiogenesis 90,140 

 • Promotion of fibroblast migration, proliferation, and diff

erentiation 

89,141 

 • Promotion of keratinocyte proliferation and differentiati

on 

142,143 

 • Stimulation of re-epithelization 24 

 • Induction of ECM formation 87,144 

Regeneration • Stimulation of wound-induced hair folliculogenesis 22,127 

 • Enhancement of epidermal stem cells proliferation and 

differentiation 

93,94 

 • Induction of hyaluronic acid synthesis 101 

ECM, extracellular matrix 
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Table 3. The Wnt/-catenin pathway activators enhancing wound healing  

Agents  

for wound healing 
Type Target Wnt component Reference 

LiCl Small molecule Inhibition of GSK3β 94 

VPA Small molecule Inhibition of GSK3β 112 

Lucidone Natural product Inhibition of GSK3β 113 

Polygonum aviculare L. Natural product Various targets 115 

PTD-DBM Peptide Inhibition of CXXC5–DVL 

interaction 

13,124 

Wnt3a Recombinant 

protein 

Wnt ligand 101 

LiCl, Lithium chloride; VPA, valproic acid; PTD, protein transduction domain; DBM, DVL 

binding motif 


